
Int. J. of Advanced Networking and Applications 597
Volume: 02, Issue: 02, Pages: 597-601 (2010)

Algorithm to Find All Cliques in a Graph
A. Ashok Kumar

Department of Computer Science , St. Xavier’s College (Autonomous), Palayamkottai - 627 002.
E-mail: ashokjuno@rediff.mail.com

S. Athisayanathan
Research Department of Mathematics, St. Xavier’s College (Autonomous),Palayamkottai - 627 002.

E-mail: athisayanathan@yahoo.co.in
A. Antonysamy

Research Department of Mathematics, St. Xavier’s College (Autonomous),Palayamkottai - 627 002.
E-mail: fr_antonysamy@hotmail.com

---ABSTRACT---
-Let V = {1, 2, 3, . . . , n} be the vertex set of a graph G, P(V) the powerset of V and A ∈ �P(V). Then A can be represented
as an ordered n-tuple (x1x2x3 . . .xn) where xi = 1 if i ∈ A, otherwise xi = 0 (1 ≤ i ≤ n). This representation is called binary
count (or BC) representation of a set A and denoted as BC(A). Given a graph G of order n, it is shown that every integer m in
S = {0, 1, 2, . . . , 2n - 1} corresponds to a subset A of V and vice versa. We introduce algorithms to find a subset A of the
vertex set V = {1, 2, 3, . . . , n} of a graph G that corresponds to an integer m in S = {0, 1, 2, . . . , 2n - 1}, verify whether A is a
subset of any other subset B of V and also verify whether the sub graph < A > induced by the set A is a clique or not using BC
representation. Also a general algorithm to find all the cliques in a graph G using BC representation is introduced. Moreover
we have proved the correctness of the algorithms and analyzed their time complexities.

Key Words: adjacency matrix, binary count, clique, powerset, subset.

Date of Submission: March 05, 2010 Date of Acceptance: May 19, 2010

1. Introduction

By a graph G = (V,E) we mean a finite undirected graph
without loops or multiple edges. |V | and |E| denote the
order and size of G respectively. We consider connected
graphs with atleast two vertices. A clique of a graph G is
a maximal complete subgraph of G.
 Various algorithms for finding cliques of graphs were
developed by Bierstone [1] and Mulligan [2] and
presented in an analysis of clustering techniques by
Augustson and Minker [3]. The Bierstone [1] algorithm
has errors and it was corrected by Mulligan and Corneil
[4]. In [5] Coen Bron and Joep Kerboscht presented two
versions of backtracking algorithms, using a branch- and-
bound technique to cut o. branches that cannot lead to a
clique. The first version is a straightforward
implementation of the basic algorithm. It is mainly
presented to illustrate the method used. This version
generates cliques in alphabetic (lexicographic) order. The
second version is derived from the first and generates
cliques in a rather unpredictable order in an attempt to
minimize the number of branches to be traversed. This
version tends to produce the larger cliques first and to
generate sequentially cliques having a large common
intersection. In this paper we introduce a new concept
called Binary Count (BC) representation to represent a
subset of a set. Using this BC representation we introduce
algorithms to .nd all the cliques in a given undirected

graph G which is different from their approach. The
following definitions are used in the sequel.
Definition 1.1 A graph H is called a subgraph of a graph
G, written H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆
E(G). A subgraph H of a graph G is called a spanning
subgraph of G if V (H) = V (G). For any set S of vertices
of G, the induced subgraph G[S] (or < S >) is the
maximal subgraph of G with vertex set S. Thus two
vertices of S are adjacent in < S > if and only if they are
adjacent in G.
Definition 1.2 Let G = (V,E) be a graph with V = {v1, v2, .
. . , vn}. The adjacency matrix Adj(G) = [aij] of G is the n
× n matrix defined by

aij =

 ∈

otherwise 0
Ev vif 1 ji

Remark 1.3 If Adj(G) = [aij] is the adjacency matrix of a
complete graph G, then

aij =

 ≠

otherwise 0
j i if 1

Definition 1.4 Let f and g be two functions defined on the
set of positive integers. The order of f is said to be lower
than or equal to the order of g if there exists a positive
real constant C and a nonnegative integer n0 such that

: f(n) ≤ Cg(n) for all n > n0.
If the order of f is lower than or equal to the

order of g, we write f(n) = O(g(n)) or say f(n) is O(g(n))

Int. J. of Advanced Networking and Applications 598
Volume: 02, Issue: 02, Pages: 597-601 (2010)

(read as f(n) is big oh of g(n)). This means that f does not
grow faster than g; the function f may grow more slowly
than g or at the same rate. The functions f and g are of the
same order if f(n) = O(g(n)) and g(n) = O(f(n)). For other
basic definitions and terminologies we refer to [6, 7].

2. Algorithms
In this section, first we introduce a representation to
represent a subset A of the vertex set V of a graph G
which is called the binary count (or BC) representation.
Definition 2.1 Let V = {1, 2, 3, . . ., n} be the vertex set of
a graph G and P(V) the powerset of V . Let A ∈ P(V).
Then A can be represented as an ordered n-tuple (x1x2x3 . .
.xn) such that

xi =

 ∈

otherwise 0
A i if 1

This representation is called binary count
representation of a set A and denoted as BC(A). To
indicate the ith term in BC(A) we use BC(A(i)). Note that
this BC representation is different from a binary form of a
decimal number and we do not use ‘,’ to separate the
coordinates in BC representation.
Definition 2.2 If BC(A) = (x1x2x3 . . .xn) is the BC
representation of a set A, then V = {1, 2, 3, . . . , n} is the
vertex set, the subset A ∈ P(V) represented by BC(A) is
A = {i : xi = 1, 1 ≤ i ≤ n} and the integer corresponds to
BC(A) is m = x12n-1 + x22n-2 + . . . + xn-121 + xn20. In the
following two theorems, given a graph G of order n we
prove that every integer m in S = {0, 1, 2, . . . , 2n-1}
corresponds to a subset A of V (G) = {1, 2, 3, . . . , n} and

also we prove that given a subset A of V (G) = {1, 2, 3, . .
., n} that corresponds to an integer m in S = {0, 1, 2, . . . ,
2n - 1}.
Theorem 2.3 Let V = {1, 2, 3, . . . , n} be the vertex set of
a graph G. Then every integer m in S = {0, 1, 2, . . . , 2n -
1} corresponds to a subset A of V .
Proof. Let V = {1, 2, 3, . . . , n} be the vertex set of a
graph G, S = {0, 1, 2, . . . , 2n -1}, X is the set of all binary
forms of the elements of S and P(V) is the powerset of V .
Clearly |S| = |X| = |P(V)| = 2n. Let f : S → X be a
map such that f(m) = (x1x2x3 . . .xn) and g : X → P(V) be
a map such that g(x1x2x3 . . .xn) = {i : xi = 1, 1 ≤ i ≤ n}.
Now define a map h : S →P(V), such that h = g � f.
Since f and g are 1 - 1 and onto, h is also 1 - 1 and onto.
Therefore every integer m in S corresponds to a subset A
of V.
Example 2.4 Let V = {1, 2, 3, 4} be the vertex set of a
graph G, S = {0, 1, 2, . . . , 15}, X = {(0000), (0001),
(0010), (0011), (0100), (0101), (0110), (0111), (1000),
(1001), (1010), (1011), (1100), (1101, (1110), (1111)},
the binary form of the elements of S and P(V)={{φ },
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3,
4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}. Let
f : S → X be a map such that f(m) = (x1x2x3 . . .xn)
where (x1x2x3 . . .xn) is the binary form of m and g : X
→P(V) be a map such that g(x1x2x3 . . .xn) = {i : xi = 1, 1
≤ i ≤ n}. Now define a map h : S →P(V), such that h
= g � f. The following Fig 2.1 shows the 1-1
correspondence between the elements of S and P(V).

Int. J. of Advanced Networking and Applications 599
Volume: 02, Issue: 02, Pages: 597-601 (2010)

Theorem 2.5 Every sub set A of V corresponds to an
integer m in S = {0, 1, 2, . . . , 2n - 1}.
Proof. Let V = {1, 2, 3, . . . , n} be the vertex set of a
graph G, S = {0, 1, 2, . . . , 2n -1}, P(V) the power set of V
and X = {BC(A) : A ∈ P(V)}. Clearly |S| = |X| = |P(V)|
= 2n. Let f : P(V) → X be a map such that f(A) = BC(A)
and g : X → S be a map such that g(BC(A)) = g((x1x2x3 . .
. xn)) = x12n-1+x22n-2+. . .+ xn-121+xn20. Now define
a map h : P(V) → S, such that h = g � f. Since f and g
are 1-1 and onto, h is also 1 - 1 and onto. Therefore
every integer m in S corresponds to a subset A of V.
Example 2.6 Let V = {1, 2, 3} be the vertex set of a graph
G, P(V) = {{φ }, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1,
2, 3}}, X = {(000), (001), (010), (011), (100), (101),
(110), (111)} the BC forms of the elements of P(V) and S
= {0, 1, 2, . . . , 7}. Let f : P(V) → X be a map such that
f(A) = BC(A) and g : X → S be a map such that g(BC(A))
= g((x1x2x3 . . .xn)) = x12n-1 + x22n-2 + . . . + xn-121 + xn20.
Now define a map h : P(V) → S, such that h =
g � f. The following Fig. 2.2 shows the 1 - 1
correspondance between the elements of S and P(V).

Let G be a connected graph with V = {1, 2, . . . ,
n} and S = {0, 1, 2, . . . , 2n - 1}. In the following, given
an integer m in S we introduce an algorithm to find a
subset A of V that corresponds to m.
Algorithm 2.7 Let G be a graph, V = {1, 2, . . ., n} be a
vertex set and S = {0, 1, 2, . . . , 2n - 1}.

1. Let m ∈ S.
2. Convert m into binary form. Let the binary form

of m be (x1x2x3 . . .xn).
3. A = {i : xi = 1}
4. stop

Theorem 2.8 Given an integer m ∈ S, the Algorithm 2.7
finds the subset A of the vertex set V of a graph G that
corresponds to m.
Proof. By Theorem 2.3, the Algorithm 2.7 finds A of V
that corresponds to m.
Theorem 2.9 The time complexity of the Algorithm 2.7 is
O(n).
Proof. Step 2 takes O(n) for converting the number to
binary form. Step 3 takes O(n) time to find the subset
from the binary form. So the computing time for the
Algorithm 2.7 is O(n).

Example 2.10 Let V = {1, 2, 3, 4} be the vertex set of a
graph G, S = {0, 1, 2, . . . , 15}.

1. Let m = 14 ∈ S.
2. Binary form of m is 1110.
3. Let A = {1, 2, 3}.
4. stop
Next, we introduce an algorithm to find a set A is the

subset of a set B or not using BC representation.
Definition 2.11 Let S = {1, 2, 3, . . ., n}, A, B ∈ P(V) ,
BC(A) = (x1x2x3 . . .xn) and BC(B) = (y1y2y3 . . .yn). Then, A
⊆ B if xi = 1 (1 ≤ i ≤ n) in BC(A) implies yi = 1 (1 ≤ i
≤ n) in BC(B).
Algorithm 2.12 Let BC(A) and BC(B) be the BC
representation of two subsets A and B of V .

1. subset = true
2. for i = 1 to n
3. if BC(A(i)) = 1 then
1. if BC(B(i)) _= 1 then subset = false; goto step 5
4. next i
5. return subset
6. stop
The following theorem follows immediately from the

Definition 2.11.
Theorem 2.13 Let A and B be two sets in BC
representation. Then the Algorithm 2.12, finds whether A
is a subset of B or not.
Theorem 2.14 The Algorithm 2.12 finds A is the subset of
B or not in O(n) time.
Proof. The steps 2 to 4 are executed for n times for
comparing the binary count representation of BC(A(i))
and BC(B(i)) . So the time complexity of the Algorithm
2.12 is O(n) time.
Example 2.15 Let V = {1, 2, 3, 4} be the vertex set of a
graph G. Let A = {1}, B = {2, 3} and C = {1,
2, 3} ∈ S. Then BC(A) = (1000), BC(B) = (0110) and
BC(C) = (1110). Now x1 = 1 in BC(A) but y1 ≠ 1 in
BC(B) therefore A ⊄ B. Where as x2 = x3 = 1 in BC(B)
and y2 = y3 = 1 in BC(C), B ⊆ C.

Now, we introduce an algorithm to find the
subgraph < A >induced by the subset A of the vertex set V
of a graph G is a clique or not.

Algorithm 2.16 Let G be a graph of order n, V (G) = {1,
2, 3, . . ., n} and A ⊆ V .

1. clique = false
2. Let A is in its BC form.
3. Let Adj(G) be the adjacency matrix of G.
4. Find the adjacency matrix Adj(< A >) as

follows: Find the 0�s in BC(A) and remove the
corresponding rows and columns of Adj(G). The
resulting matrix is Adj(< A >).

5. Verify Adj(< A >) is complete. If it is complete
then clique = true.

6. return clique
7. stop

Int. J. of Advanced Networking and Applications 600
Volume: 02, Issue: 02, Pages: 597-601 (2010)

Theorem 2.17 The Algorithm 2.16 returns whether the
given subgraph < A > induced by the subset A of the
vertex set V of a graph G is a clique or not.
Proof. Step 1 initializes the Boolean variable clique =
false. Step 2 reads the BC(A). At step 4 we construct the
Adj(< A >) by removing the ith row and ith column from
Adj(G) of G for every BC(A(i)) = 0 (1 ≤ i ≤
n). At step 5 the adjacency matrix of A is compared,
whether the matrix is complete or not. If complete then
clique = true otherwise clique= false.
Theorem 2.18 The Algorithm 2.16 finds the subgraph <
A > induced by the subset A is a clique or not in O(n2)
time.
Proof. Step 4 is executed for n times to construct the
adjacency matrix Adj(A) and the computation time is
O(n). In order to find the completeness the step 5 is
executed for maximum of O(n2) times. So the
computation time for the Algorithm 2.16 is O(n2).
Example 2.19 Let G be a graph given in Figure 2.3. Let V
= {1, 2, 3, 4} and A = {1, 2, 3}. Now, let us verify
whether the sub graph < A > induced by the subset A of
the vertex set V of a graph is clique or not.

1. clique = false
2. Let BC(A) = (1110).
3. Let Adj(G) be the given adjacency matrix of G.

Adj(G) =

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

4. The adjacency matrix Adj(A) of < A > is
obtained by the Algorithm 2.16 is as follows: In
BC(A), 4th element is 0, therefore remove 4th
row and 4th column of Adj(G). So that

Adj(A) =

0 1 1
1 0 1
1 1 0

5. All the entries of Adj(A), except the diagonal are
1, A is complete. So, clique = true.

Therefore the algorithm returns the sub graph < A >
induced by the subset A of the vertex set V of a graph G is
clique.

3. The General Algorithm
Finally, we introduce a general algorithm to fid all the
cliques in a connected graph G of order n.
Algorithm 3.1 Let V = {1, 2, 3, . . . , n} be the vertex set
of a graph G, S = {0, 1, 2, . . . , 2n - 1}, let C = {c1, c2, . . .
, cp} denotes the set of all cliques, initially C is empty.

1. Initialize C = {φ }.
2. for m = 2n - 1 to 1

 Find the subset A by calling the Algorithm 2.7.
 Check A is a subset of any other set in the clique list
C using the Algorithm 2.12.
 If subset = true, then goto step 3
 Call Algorithm 2.16 to find the sub graph < A >
induced by A is a clique or not.
 If clique = true, then store A in the clique list C.

3. Next m
4. Stop
The following theorem follows immediately from

Theorems 2.8, 2.13 and 2.17.
Theorem 3.2 The Algorithm 3.1 lists the cliques in a
graph G.
Theorem 3.3 All cliques in a graph G can be found in
O(2nn2) using Algorithm 3.1.
Proof. The step 2 is executed for 2n - 1 times to find the
subset of vertex set V. This step calls the Algorithms 2.7,
2.12 and 2.16. The time complexity of the Algorithms 2.7,
2.12 and 2.16 are O(n), O(n) and O(n2) respectively. So,
the time complexity of the step 2 is O(2nn2). Thus the
complexity of Algorithm 3.1 is O(2nn2).
Example 3.4 Using the Algorithm 2.16, let us find all the
cliques in the graph G given in Figure 2.3.

Let V = {1, 2, 3, 4}, S = {0, 1, 2, 3, . . . , 15}.
Step 1: C = {φ }
Step 2: Let m = 15

Step 2.1: by the Algorithm 2.7, m corresponds to
the sub set A = {1, 2, 3, 4}.
Step 2.2: by the Algorithm 2.12, checks that the set
A is a sub set of any other set in the clique list C and
returns subset = false.
Step 2.3: Since subset = false goto next step 2.4.
Step 2.4: the Algorithm 2.16 checks A is a clique or
not and returns clique = false.
Step 2.5: since clique = false, goto step 3

Step 3: goto step 2.
Step 2: Let m = 14,

Step 2.1: by the Algorithm 2.7, m corresponds to
the sub set A = {1, 2, 3}.
Step 2.2: by the Algorithm 2.12, checks that the set
A is a sub set of any other set in the clique list C and
returns subset = false.
Step 2.3: Since subset = false goto step 2.4.
Step 2.4: the Algorithm 2.16 checks A is a clique or
not and returns clique = true.
Step 2.5: since clique = true, store A into clique list
C = {(1110)}, goto step 3

Step 3: goto step 2.

Int. J. of Advanced Networking and Applications 601
Volume: 02, Issue: 02, Pages: 597-601 (2010)

Similarly we find all the subsets A of the vertex set V of G
that corresponds to an integer m in S = {13, 12, . . . , 1}
and verify whether A is a subset of any other subset of C
and also verify whether the sub graph < A > induced
by A is a clique or not. Hence this algorithm lists the
following cliques C = {(1110), (1011)} and by Definition
2.1 the vertex sets of the cliques are {{1, 2, 3}, {1, 3, 4}}.

4. Conclusion
In this paper we have introduced a new representation
called BC representation to represent a subset of a
set and using this BC representation, we have developed
an algorithm to find a subset A of V = {1, 2, . . ., n} that
corresponds an integer m ∈ S = {0, 1, 2, . . . , 2n - 1}, an
algorithm to find a set A is the subset of a set B or not,
an algorithm to find the subgraph < A > induced by the
subset A of the vertex set V of a graph G is a clique or not
and a general algorithm to find all the cliques in a graph
G. Further using this BC representation we can develop
algorithms to find clique graph of a graph G and
algorithms for central structures.

References
[1] E. Bierstone, Cliques and generalized cliques in a
finite linear graph, Unpublished report.

[2] G.D. Mulligan, Algorithms for finding cliques of a
graph, M.Sc. thesis, Dep. Of Computer Sci., U. of
Toronto, Toronto, Ontario, Can.

[3] J .G. Augustson and J . Minker, An analysis of some
graph theoretical cluster techniques. Journal of ACM. 17,
No.4 (1970), 571-588.

[4] G.D. Mulligan and D.G. Corneil, Corrections to
Bierstone’s Algorithm for Generating Cliques, Journal of
the Association for Computing Machinery. 19, No. 2
(1972), 244-247.

[5] Coen Bron and Joep Kerboscht, Finding All Cliques
of an Undirected Graph [H], Communications of the
ACM. 16, No.9 (1973),575 - 580.

[6] G. Chartrand and Ortrud R. Oellermann, Applied and
Algorithmic Graph Theory, McGraw-Hill International
editions (1993).

[7] K.R. Parthasarathy, Basic Graph Theory, Tata
McGraw-Hill Publishing Company Limited, New Delhi
(1994)

Authors Biography

Author 1:
Name: A.Ashok Kumar
Qualification: M.Sc., M.Phil., (Ph.D.)
Experience: 14 Years Teaching in Computer Science (13
years at St.Xavier’s College(Autonomous),
Palayamkottai-627002)
Research Experience: 4 Years
Books Published : 3
Present working Address: Assistant Professor,
Department Of Computer Science, V.S.S. Govt. Arts
College, Pulankurichi, Sivagangai Dist., Tamil Nadu.
E-mail: ashokjuno@rediff.mail.com

Author 2:
Name: Dr. S. Athisayanathan
Qualification: M.Sc., M.Phil., Ph.D.
Experience: 27 Years Teaching in Mathematics
Research Experience: 8 Years
Present Working Address: Professor, Research
Department of Mathematics, St.Xavier’s
College(Autonomous), Palayamkottai-627002,
TamilNadu.
E-mail: athisayanathan@yahoo.co.in

Author 3:
Name: Rev. Dr. A. Antonysamy S.J.
Qualification: M.Sc., M.Phil., Ph.D.
Experience: 35 Years Teaching in Mathematics (worked
in St.Joseph’s College, Trichy and St. Xavier’s College,
Palayamkottai at various levels like Vice-principal and
Principal)
Research Experience: 20 Years
Present Working Address: Principal, St.Xavier’s College,
Kathmandu, Nepal.
E-mail: fr_antonysamy@hotmail.com

