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---------------------------------------------------------------------ABSTRACT-----------------------------------------------------------------
-Let V = {1, 2, 3, . . . , n} be the vertex set of a graph G, P(V ) the powerset of V and   A ∈ �P(V ). Then A can be represented 
as an ordered n-tuple (x1x2x3 . . .xn) where xi = 1 if    i ∈  A, otherwise xi = 0 (1 ≤ i ≤ n). This representation is called binary 
count (or BC) representation of a set A and denoted as BC(A). Given a graph G of order n, it is shown that every integer m in 
S = {0, 1, 2, . . . , 2n - 1} corresponds to a subset A of V and vice versa. We introduce algorithms to find a subset A of the 
vertex set V = {1, 2, 3, . . . , n} of a graph G that corresponds to an integer m in S = {0, 1, 2, . . . , 2n - 1}, verify whether A is a 
subset of any other subset B of V and also verify whether the sub graph < A > induced by the set A is a clique or not using BC 
representation. Also a general algorithm to find all the cliques in a graph G using BC representation is introduced. Moreover 
we have proved the correctness of the algorithms and analyzed their time complexities. 
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1. Introduction 

By a graph G = (V,E) we mean a finite undirected graph 
without loops or multiple edges. |V | and |E| denote the 
order and size of G respectively. We consider connected 
graphs with atleast two vertices. A clique of a graph G is 
a maximal complete subgraph of G.  
     Various algorithms for finding cliques of graphs were 
developed by Bierstone [1] and Mulligan [2] and 
presented in an analysis of clustering techniques by 
Augustson and Minker [3]. The Bierstone [1] algorithm 
has errors and it was corrected by Mulligan and Corneil 
[4]. In [5] Coen Bron and Joep Kerboscht presented two 
versions of backtracking algorithms, using a branch- and-
bound technique to cut o. branches that cannot lead to a 
clique. The first version is a straightforward 
implementation of the basic algorithm. It is mainly 
presented to illustrate the method used. This version 
generates cliques in alphabetic (lexicographic) order. The 
second version is derived from the first and generates 
cliques in a rather unpredictable order in an attempt to 
minimize the number of branches to be traversed. This 
version tends to produce the larger cliques first and to 
generate sequentially cliques having a large common 
intersection. In this paper we introduce a new concept 
called Binary Count (BC) representation to represent a 
subset of a set. Using this BC representation we introduce 
algorithms to .nd all the cliques in a given  undirected 

graph G which is different from their approach. The 
following definitions are used in the sequel. 
Definition 1.1 A graph H is called a subgraph of a graph 
G, written H ⊆  G, if V (H) ⊆ V (G) and       E(H) ⊆  
E(G). A subgraph H of a graph G is called a spanning 
subgraph of G if V (H) = V (G). For any set S of vertices 
of G, the induced subgraph G[S] (or < S >) is the 
maximal subgraph of G with vertex set S. Thus two 
vertices of S are adjacent in < S > if and only if they are 
adjacent in G. 
Definition 1.2 Let G = (V,E) be a graph with V = {v1, v2, . 
. . , vn}. The adjacency matrix Adj(G) = [aij] of G is the n 
× n matrix defined by  

aij =


 ∈

otherwise 0
Ev vif 1 ji

 

Remark 1.3 If Adj(G) = [aij ] is the adjacency matrix of a 
complete graph G, then 

aij = 


 ≠

otherwise 0
j  i if 1

 

Definition 1.4 Let f and g be two functions defined on the 
set of positive integers. The order of f is said to be lower 
than or equal to the order of g if there exists a positive 
real constant C and a nonnegative integer n0 such that 

: f(n) ≤  Cg(n) for all n > n0. 
If the order of f is lower than or equal to the 

order of g, we write f(n) = O(g(n)) or say f(n) is O(g(n)) 
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(read as f(n) is big oh of g(n)). This means that f does not 
grow faster than g; the function f may grow more slowly 
than g or at the same rate. The functions f and g are of the 
same order if f(n) = O(g(n)) and g(n) = O(f(n)). For other 
basic definitions and terminologies we refer to [6, 7]. 
 
2. Algorithms 
In this section, first we introduce a representation to 
represent a subset A of the vertex set V of a graph G 
which is called the binary count (or BC) representation. 
Definition 2.1 Let V = {1, 2, 3, . . ., n} be the vertex set of 
a graph G and P(V ) the powerset of V . Let   A ∈  P(V ). 
Then A can be represented as an ordered n-tuple (x1x2x3 . . 
.xn) such that 

xi = 


 ∈

otherwise 0
A i  if  1

 

This representation is called binary count 
representation of a set A and denoted as BC(A). To 
indicate the ith term in BC(A) we use BC(A(i)). Note that 
this BC representation is different from a binary form of a 
decimal number and we do not use ‘,’ to separate the 
coordinates in BC representation. 
Definition 2.2 If BC(A) = (x1x2x3 . . .xn) is the BC 
representation of a set A, then V = {1, 2, 3, . . . , n} is the 
vertex set, the subset A ∈  P(V ) represented by BC(A) is 
A = {i : xi = 1, 1 ≤  i ≤  n} and the integer corresponds to 
BC(A) is m = x12n-1 + x22n-2 + . . . + xn-121 + xn20. In the 
following two theorems, given a graph G of order n we 
prove that every integer m in S = {0, 1, 2, . . . , 2n-1} 
corresponds to a subset A of V  (G) = {1, 2, 3, . . . , n} and 

also we prove that given a subset A of V (G) = {1, 2, 3, . . 
., n} that corresponds to an integer m in S = {0, 1, 2, . . . , 
2n - 1}. 
Theorem 2.3 Let V = {1, 2, 3, . . . , n} be the vertex set of 
a graph G. Then every integer m in S = {0, 1, 2, . . . , 2n - 
1} corresponds to a subset A of V .  
Proof. Let V = {1, 2, 3, . . . , n} be the vertex set of a 
graph G, S = {0, 1, 2, . . . , 2n -1}, X is the set of all binary 
forms of the elements of S and P(V ) is the powerset of V . 
Clearly |S| = |X| = |P(V )| = 2n. Let           f : S →  X be a 
map such that f(m) = (x1x2x3 . . .xn) and g : X →  P(V ) be 
a map such that g(x1x2x3 . . .xn) = {i : xi = 1, 1 ≤  i ≤  n}. 
Now define a map h : S →P(V ), such that h = g �  f. 
Since f and g are 1 - 1 and onto, h is also 1 - 1 and onto. 
Therefore every integer m in S corresponds to a subset A 
of V. 
Example 2.4 Let V = {1, 2, 3, 4} be the vertex set of a 
graph G, S = {0, 1, 2, . . . , 15}, X = {(0000), (0001), 
(0010), (0011), (0100), (0101), (0110), (0111), (1000), 
(1001), (1010), (1011), (1100), (1101, (1110), (1111)}, 
the binary form of the elements of S and P(V )={{φ }, 
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 
4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}. Let 
f : S →  X be a map such that         f(m) = (x1x2x3 . . .xn) 
where (x1x2x3 . . .xn) is the binary form of m and g : X 
→P(V ) be a map such that g(x1x2x3 . . .xn) = {i : xi = 1, 1 
≤  i ≤  n}. Now define a map h : S →P(V ), such that h 
= g �  f. The following Fig 2.1 shows the 1-1 
correspondence between the elements of S and P(V ). 
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Theorem 2.5 Every sub set A of V corresponds to an 
integer m in S = {0, 1, 2, . . . , 2n - 1}.  
Proof. Let V = {1, 2, 3, . . . , n} be the vertex set of a 
graph G, S = {0, 1, 2, . . . , 2n -1}, P(V ) the power set of V 
and X = {BC(A) : A ∈  P(V )}. Clearly |S| = |X| = |P(V )| 
= 2n. Let f : P(V ) →  X be a map such that f(A) = BC(A) 
and g : X →  S be a map such that g(BC(A)) = g((x1x2x3 . . 
. xn)) = x12n-1+x22n-2+. . .+             xn-121+xn20. Now define 
a map h : P(V ) →  S, such that h = g �  f. Since f and g 
are 1-1 and onto, h is also     1 - 1 and onto. Therefore 
every integer m in S corresponds to a subset A of V. 
Example 2.6 Let V = {1, 2, 3} be the vertex set of a graph 
G, P(V ) = {{φ }, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 
2, 3}}, X = {(000), (001), (010), (011), (100), (101), 
(110), (111)} the BC forms of the elements of P(V ) and S 
= {0, 1, 2, . . . , 7}. Let f : P(V ) →  X be a map such that 
f(A) = BC(A) and g : X →  S be a map such that g(BC(A)) 
= g((x1x2x3 . . .xn)) = x12n-1 + x22n-2 + . . . + xn-121 + xn20. 
Now define a map               h : P(V ) →  S, such that h = 
g �  f. The following Fig. 2.2 shows the 1 - 1 
correspondance between the elements of S and P(V ). 

Let G be a connected graph with V = {1, 2, . . . , 
n} and S = {0, 1, 2, . . . , 2n - 1}. In the following, given 
an integer m in S we introduce an algorithm to find a 
subset A of V that corresponds to m. 
Algorithm 2.7 Let G be a graph, V = {1, 2, . . ., n} be a 
vertex set and S = {0, 1, 2, . . . , 2n - 1}. 

1. Let m ∈  S. 
2. Convert m into binary form. Let the binary form 

of m be (x1x2x3 . . .xn). 
3. A = {i : xi = 1} 
4. stop 

Theorem 2.8 Given an integer m ∈  S, the Algorithm 2.7 
finds the subset A of the vertex set V of a graph G that 
corresponds to m. 
Proof. By Theorem 2.3, the Algorithm 2.7 finds A of V 
that corresponds to m. 
Theorem 2.9 The time complexity of the Algorithm 2.7 is 
O(n). 
Proof. Step 2 takes O(n) for converting the number to 
binary form. Step 3 takes O(n) time to find the subset 
from the binary form. So the computing time for the 
Algorithm 2.7 is O(n). 

Example 2.10 Let V = {1, 2, 3, 4} be the vertex set of a 
graph G, S = {0, 1, 2, . . . , 15}. 

1. Let m = 14 ∈  S. 
2. Binary form of m is 1110. 
3. Let A = {1, 2, 3}. 
4. stop 
Next, we introduce an algorithm to find a set A is the 

subset of a set B or not using BC representation. 
Definition 2.11 Let S = {1, 2, 3, . . ., n}, A, B ∈  P(V ) , 
BC(A) = (x1x2x3 . . .xn) and BC(B) = (y1y2y3 . . .yn). Then, A 
⊆  B if xi = 1 (1 ≤  i ≤   n) in BC(A) implies yi = 1 (1 ≤   i 
≤   n) in BC(B). 
Algorithm 2.12 Let BC(A) and BC(B) be the BC 
representation of two subsets A and B of V . 

1. subset = true 
2. for i = 1 to n 
3. if BC(A(i)) = 1 then 
1. if BC(B(i)) _= 1 then subset = false; goto step 5 
4. next i 
5. return subset 
6. stop 
The following theorem follows immediately from the 

Definition 2.11. 
Theorem 2.13 Let A and B be two sets in BC 
representation. Then the Algorithm 2.12, finds whether A 
is a subset of B or not. 
Theorem 2.14 The Algorithm 2.12 finds A is the subset of 
B or not in O(n) time. 
Proof. The steps 2 to 4 are executed for n times for 
comparing the binary count representation of BC(A(i)) 
and BC(B(i)) . So the time complexity of the Algorithm 
2.12 is O(n) time. 
Example 2.15 Let V = {1, 2, 3, 4} be the vertex set of a 
graph G. Let A = {1}, B = {2, 3} and                      C = {1, 
2, 3} ∈  S. Then BC(A) = (1000), BC(B) = (0110) and 
BC(C) = (1110). Now x1 = 1 in BC(A) but   y1 ≠  1 in 
BC(B) therefore A ⊄  B. Where as x2 = x3 = 1 in BC(B) 
and y2 = y3 = 1 in BC(C), B ⊆  C. 

Now, we introduce an algorithm to find the 
subgraph < A >induced by the subset A of the vertex set V 
of a graph G is a clique or not. 

 
Algorithm 2.16 Let G be a graph of order n, V (G) = {1, 
2, 3, . . ., n} and A ⊆  V . 

1. clique = false 
2. Let A is in its BC form. 
3. Let Adj(G) be the adjacency matrix of G. 
4. Find the adjacency matrix Adj(< A >) as 

follows: Find the 0�s in BC(A) and remove the 
corresponding rows and columns of Adj(G). The 
resulting matrix is Adj(< A >). 

5. Verify Adj(< A >) is complete. If it is complete 
then clique = true. 

6. return clique 
7. stop 
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Theorem 2.17 The Algorithm 2.16 returns whether the 
given subgraph < A > induced by the subset A of the 
vertex set V of a graph G is a clique or not. 
Proof. Step 1 initializes the Boolean variable clique = 
false. Step 2 reads the BC(A). At step 4 we construct the 
Adj(< A >) by removing the ith row and ith column from 
Adj(G) of G for every BC(A(i)) = 0                  (1 ≤  i ≤  
n). At step 5 the adjacency matrix of A is compared, 
whether the matrix is complete or not. If complete then 
clique = true otherwise clique= false. 
Theorem 2.18 The Algorithm 2.16 finds the subgraph < 
A > induced by the subset A is a clique or not in O(n2) 
time. 
Proof. Step 4 is executed for n times to construct the 
adjacency matrix Adj(A) and the computation time is 
O(n). In order to find the completeness the step 5 is 
executed for maximum of O(n2) times. So the 
computation time for the Algorithm 2.16 is O(n2). 
Example 2.19 Let G be a graph given in Figure 2.3. Let V 
= {1, 2, 3, 4} and A = {1, 2, 3}. Now, let us verify 
whether the sub graph < A > induced by the subset A of 
the vertex set V of a graph is clique or not. 

1. clique = false 
2. Let BC(A) = (1110). 
3. Let Adj(G) be the given adjacency matrix of G. 

Adj(G) =





















0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 

4. The adjacency matrix Adj(A) of < A > is 
obtained by the Algorithm 2.16 is as follows: In 
BC(A), 4th element is 0, therefore remove 4th 
row and 4th column of Adj(G). So that 

Adj(A) =
















0 1 1
1 0 1
1 1 0

 

5. All the entries of Adj(A), except the diagonal are 
1, A is complete. So, clique = true. 

Therefore the algorithm returns the sub graph < A > 
induced by the subset A of the vertex set V of a graph G is 
clique. 

3. The General Algorithm 
Finally, we introduce a general algorithm to fid all the 
cliques in a connected graph G of order n. 
Algorithm 3.1 Let V = {1, 2, 3, . . . , n} be the vertex set 
of a graph G, S = {0, 1, 2, . . . , 2n - 1}, let C = {c1, c2, . . . 
, cp} denotes the set of all cliques, initially C is empty. 

1. Initialize C = {φ }. 
2. for m = 2n - 1 to 1 

 Find the subset A by calling the Algorithm 2.7. 
 Check A is a subset of any other set in the clique list 
C using the Algorithm 2.12. 
 If subset = true, then goto step 3 
 Call Algorithm 2.16 to find the sub graph < A > 
induced by A is a clique or not. 
 If clique = true, then store A in the clique list C. 

3. Next m 
4. Stop 
The following theorem follows immediately from 

Theorems 2.8, 2.13 and 2.17. 
Theorem 3.2 The Algorithm 3.1 lists the cliques in a 
graph G. 
Theorem 3.3 All cliques in a graph G can be found in 
O(2nn2) using Algorithm 3.1. 
Proof. The step 2 is executed for 2n - 1 times to find the 
subset of vertex set V. This step calls the Algorithms 2.7, 
2.12 and 2.16. The time complexity of the Algorithms 2.7, 
2.12 and 2.16 are O(n), O(n) and O(n2) respectively. So, 
the time complexity of the step 2 is O(2nn2). Thus the 
complexity of     Algorithm 3.1 is O(2nn2). 
Example 3.4 Using the Algorithm 2.16, let us find all the 
cliques in the graph G given in Figure 2.3. 
 

Let V = {1, 2, 3, 4}, S = {0, 1, 2, 3, . . . , 15}. 
Step 1: C = {φ } 
Step 2: Let m = 15 

Step 2.1: by the Algorithm 2.7, m corresponds to 
the sub set A = {1, 2, 3, 4}. 
Step 2.2: by the Algorithm 2.12, checks that the set 
A is a sub set of any other set in the clique list C and 
returns subset = false. 
Step 2.3: Since subset = false goto next step 2.4. 
Step 2.4: the Algorithm 2.16 checks A is a clique or 
not and returns clique = false. 
Step 2.5: since clique = false, goto step 3 

Step 3: goto step 2. 
Step 2: Let m = 14, 

Step 2.1: by the Algorithm 2.7, m corresponds to 
the sub set A = {1, 2, 3}. 
Step 2.2: by the Algorithm 2.12, checks that the set 
A is a sub set of any other set in the clique list C and 
returns subset = false. 
Step 2.3: Since subset = false goto step 2.4. 
Step 2.4: the Algorithm 2.16 checks A is a clique or 
not and returns clique = true. 
Step 2.5: since clique = true, store A into clique list 
C = {(1110)}, goto step 3 

Step 3: goto step 2. 
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Similarly we find all the subsets A of the vertex set V of G 
that corresponds to an integer m in S = {13, 12, . . . , 1} 
and verify whether A is a subset of any other subset of C 
and also verify whether the sub graph        < A > induced 
by A is a clique or not. Hence this algorithm lists the 
following cliques C = {(1110), (1011)} and by Definition 
2.1 the vertex sets of the cliques are {{1, 2, 3}, {1, 3, 4}}. 
 
4. Conclusion 
In this paper we have introduced a new representation 
called BC representation to represent a subset          of a 
set and using this BC representation, we have developed 
an algorithm to find a subset A of V = {1, 2, . . ., n} that 
corresponds an integer m ∈  S = {0, 1, 2, . . . , 2n - 1}, an 
algorithm to find a set A is the subset    of a set B or not, 
an algorithm to find the subgraph < A > induced by the 
subset A of the vertex set V of a graph G is a clique or not 
and a general algorithm to find all the cliques in a graph 
G. Further using this BC representation we can develop 
algorithms to find clique graph of a graph G and 
algorithms for central structures. 
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